INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 133 SF/22

Date: 17 of June 2022

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of PRO WALL DOUBLE according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall of PRO

WALL DOUBLE according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

PRO WALL DOUBLE

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Pitched roof ($\alpha = 0^{\circ}$)		7.09
Pitched roof ($\alpha = 30^{\circ}$)	EN ISO 6946:2017	7.15
Pitched roof ($\alpha = 45^{\circ}$)		7.20
Wall ($\alpha = 90^{\circ}$)		7.36

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

made by:

University of Technology

Name of the organization)

Products used Multilayer reflective insulation product PRO WALL (110 mm) (test report no.

in calculation:

129 SF/22 U)

Declared thickness of product PRO WALL - 80±10 mm

Additional information:

Application, 2022-06-09

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

K. Banionis

(approves the test results)

etuvos Re (n., surname)

(signature)

Calculated by

(calculation made by)

Stonkuvienė

(n., surname)

DOKUMENTAI

S.P.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W	
PRO WALL (test report No. 129 SF/22 U)	R _{core90/90} = 3.25	
"Rcore90/90" is the declared R core value following EN $16012 + A1$. "Rcore90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following		
EN 16012 + A1 (and using the fractile 90/90 calcula	tion rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$).	

Temperature regime 20°C / 0°C		
1.	Unventilated Air cavity #1, 20 mm	
2.	PRO WALL, 110 mm	
3.	PRO WALL, 110 mm	
4.	Ventilated Air cavity #2, 20 mm	

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

PRO WALL DOUBLE installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4375	m²·K/W
	PRO WALL	3.25	m²·K/W
	PRO WALL	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1475	m²·K/W
	R Total	7.09	m²·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

PRO WALL DOUBLE installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4872	m²·K/W
	PRO WALL	3.25	m²·K/W
	PRO WALL	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1672	m²·K/W
	R Total	7.15	m²·K/W

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

PRO WALL DOUBLE installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5166	m²·K/W
	PRO WALL	3.25	m²·K/W
	PRO WALL	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1792	m²·K/W
	R Total	7.20	m2·K/W

Table 5: Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN ISO 6946)

PRO WALL DOUBLE installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.6306	m²·K/W
	PRO WALL	3.25	m²·K/W
	PRO WALL	3.25	m²·K/W
	Ventilated Air cavity # 2	0.2337	m²·K/W
	R Total	7.36	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when PRO WALL DOUBLE is installed from the internal side of the Roof or the external part of the Roof.
- Calculations of R values are valid when PRO WALL DOUBLE is installed in agreement with the installation guidelines described into the manufacturer brochure.