INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 135 SF/22

Date: 17 of June 2022

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of PRO BARDAGE / PRO W according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall of PRO

BARDAGE / PRO W according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

PRO BARDAGE / PRO W

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Pitched roof ($\alpha = 0^{\circ}$)		3.84
Pitched roof ($\alpha = 30^{\circ}$)	TVV 100 (0.14 0.015	3.90
Pitched roof ($\alpha = 45^{\circ}$)	EN ISO 6946:2017	3.95
Wall (α = 90°)		4.12

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

made by:

University of Technology

(Name of the organization)

Products used Multilayer reflective insulation product PRO BARDAGE / PRO W (110 mm)

in calculation:

(test report no. 129 SF/22 U)

Declared thickness of product PRO BARDAGE / PRO W - 80±10 mm

Additional information:

Application, 2022-06-09

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

K. Banionis

(approves the test results)

(n., surname)

(signature

Calculated by (calculation made by) DOKUMENTA

A. Stonkuvienė

(n., surname)

Validity - the named data and results refer exclusively to the tested and described specimens.

Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Web site: www.ktu.edu/asi/en/; E.mail: statybine.fizika@ktu.lt

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m²·K)/W	
PRO BARDAGE / PRO W (test report No. 129 SF/22 U)	$R_{core90/90} = 3.25$	
"Rcore90/90" is the declared R core value following EN $16012 + A1$. "Rcore90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following		
EN 16012 + A1 (and using the fractile 90/90 calcula	ation rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$).	

Temperature regime 20°C / 0°C			
1.	Unventilated Air cavity #1, 20 mm		
2.	PRO BARDAGE / PRO W, 110 mm		
3.	Ventilated Air cavity #2, 20 mm		

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

PRO BARDAGE / PRO W installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer R value		Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4380	m²·K/W
	PRO BARDAGE / PRO W	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1474	m ² ·K/W
	R Total	3.84	m²·K/W

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

PRO I	BARDAGE / PRO W installed of	n roof	
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4879	m ² ·K/W
	PRO BARDAGE / PRO W	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1671	m ² ·K/W
	R Total	3.90	m2·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

PRO BARDAGE / PRO W installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5173	m²·K/W
	PRO BARDAGE / PRO W	3.25	m²·K/W
	Ventilated Air cavity # 2	0.1790	m²·K/W
	R Total	3.95	m²·K/W

Table 5: Wall construction calculation results for slope α = 90° (EN ISO 6946)

PRO BARDAGE / PRO W installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	Unit	
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.6317	m²·K/W
	PRO BARDAGE / PRO W	3.25	m²·K/W
	Ventilated Air cavity # 2	0.2333	m²·K/W
	R Total	4.12	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when PRO BARDAGE / PRO W is installed from the internal side of the Roof or the external part of the Roof.
- Calculations of R values are valid when PRO BARDAGE / PRO W is installed in agreement with the installation guidelines described into the manufacturer brochure.