INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 245 SF/22

Date: 31 of October 2022

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of MIX PR 80 according to EN ISO 6946:2017

(test name)

Determination of installed thermal resistance into a roof and into a wall of ATI MIX Fibre de bois Test method:

100 / ATI MIX GPE according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name: ATI MIX Fibre de bois 100 / ATI MIX GPE

(identification of the specimen)

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France Customer:

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Pitched roof ($\alpha = 45^{\circ}$)	EN ISO 6946:2017	6.04
Wall ($\alpha = 90^{\circ}$)	E1 150 0540.2017	6.27

R value for others pitched sloop (different lpha value) can be determined by linear interpolation between two calculated R values

Calculation

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas made by:

University of Technology

(Name of the organization)

Products used

Ventilated air layer (external surface resistance R_{se}).

Multilayer reflective insulation product TECH PRO (test report no. 244 SF/22 U). in calculation: Emissivity of TECH PRO upper surface $\varepsilon = 0.25^*$; lower surface $\varepsilon = 0.60^*$;

Unventilated air layer 20 mm;

Wood fiber 100 mm. Thermal resistance $R = 2.60 \text{ m}^2 \cdot \text{K/W} *$;

TECH VAP + (reflective vapour barrier). Emissivity of TECH VAP+ $\varepsilon = 0.05*$;

Unventilated air layer 20 mm. * Declared by the manufacturer

AKUMENTA!

ktūros ir technolog

Additional information:

Application, 2022-10-17

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory: (approves the test results)

Respublik

K. Banionis

Calculated by

(calculation made by)

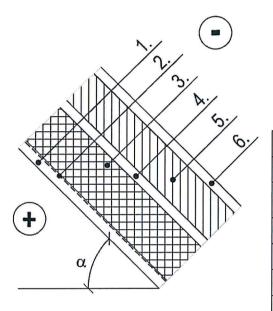
(n., surname)

Ramanauskas

(n., surname)

(signature)

Validity - the named data and results refer exclusively to the tested and described specimens.


Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W	
TECH PRO (test report n° 244 SF/22 U)	$R_{core90/90} = 2.50$	
"Rcore90/90" is the declared R core value following EN 16012 + A1.		
"Rcore90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following		
EN 16012 + A1 (and using the fractile 90/90 calcula	tion rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$).	

Tem	Temperature regime 20°C / 0°C		
1.	Unventilated Air cavity #1, 20 mm		
2.	Tech Vap + (reflective vapor barrier)		
3.	Wood fiber, 100 mm		
4.	Unventilated Air cavity #2, 20 mm		
5.	TECH PRO, 80 mm		
6.	Ventilated Air cavity #3, 20 mm		

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI MIX Fibre de bois 100 installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5316	m²·K/W
	Wood fiber	2.60	m²·K/W
	Unventilated Air cavity # 2	0.2232	m²·K/W
	TECH PRO	2.50	m²·K/W
	Ventilated Air cavity # 3 (the thermal resistance of external surface R_{se})	0.1864	m²·K/W
	R Total	6.04	m²·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN ISO 6946)

ATI MIX Fibre de bois 100 installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.6531	m²·K/W
	Wood fiber	2.60	m²·K/W
	Unventilated Air cavity # 2	0.2421	m²·K/W
	TECH PRO	2.50	m²·K/W
	Ventilated Air cavity # 3 (the thermal resistance of external surface R_{se})	0.2729	m²·K/W
	R Total	6.27	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when TECH PRO is installed in agreement with the installation guidelines described into the manufacturer brochure.